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ABSTRACT: The relation between the El Niño–Southern Oscillation (ENSO) and California precipitation has been

studied extensively and plays a prominent role in seasonal forecasting. However, a wide range of precipitation outcomes on

seasonal time scales are possible, even during extreme ENSO states. Here, we investigate prediction skill and its origins on

subseasonal time scales. Model predictions of California precipitation are examined using Subseasonal Experiment (SubX)

reforecasts for the period 1999–2016, focusing on those from the Flow-Following Icosahedral Model (FIM). Two potential

sources of subseasonal predictability are examined: the tropical Pacific Ocean and upper-level zonal winds near California.

In both observations and forecasts, the Niño-3.4 index exhibits a weak and insignificant relationship with daily to monthly

averages of California precipitation. Likewise, model tropical sea surface temperature and outgoing longwave radiation

show onlyminimal relations with California precipitation forecasts, providing no evidence that flavors of El Niño or tropical
modes substantially contribute to the success or failure of subseasonal forecasts. On the other hand, an index for upper-level

zonal winds is strongly correlated with precipitation in observations and forecasts, across averaging windows and lead times.

The wind index is related to ENSO, but the correlation between the wind index and precipitation remains even after

accounting for ENSO phase. Intriguingly, the Niño-3.4 index and California precipitation show a slight but robust negative

statistical relation after accounting for the wind index.

KEYWORDS: Extratropics; North Pacific Ocean; Pacific Ocean; Tropics; ENSO; Precipitation; Sea surface temperature;

Wind; Hindcasts; Short-range prediction; Climate models; Model errors; Model evaluation/performance

1. Introduction

The flooding and landslides in California that followed the

strong 1982/83 and 1997/98 El Niño events raised concerns that

the predicted strong 2015/16 El Niño could lead to similar

outcomes. An El Niño advisory was issued in March 2015, and

in April 2015 forecasters at the NOAA/Climate Prediction

Center (CPC) began to note the potential for enhanced pre-

cipitation over parts of California during winter 2015/16 (CPC

2015a,b). In August 2015, CPC forecasters indicated that the

upcoming El Niño would be historically strong with Niño-3.4
index values exceeding12.08C (CPC 2015c). Hoell et al. (2016)

used historical AMIP simulations to conclude that there was an

85% chance of increased California precipitation during El

Niño events as strong as the 2015/16 event was predicted to be.

In contrast, operational CPC precipitation forecasts for

California gave a 40%–60% chance of above-median precipi-

tation for January–March 2016 (CPC 2015d). The weaker CPC

probabilities turned out to be justified in the sense that below-

median precipitation was observed across much of California

(Jong et al. 2018; Chen and Kumar 2018), frustrating hopes for

the end of California’s multiyear drought (Seager et al. 2015;

Wahl et al. 2017). Wet conditions during the 2016/17 La Niña
raised further questions as to the impact of El Niño–Southern
Oscillation (ENSO) on California precipitation.

ENSO is a primary source of skill in seasonal precipitation

forecasts. Consequently, seasonal precipitation forecasts tend

to closely resemble ENSO teleconnections and be most con-

fident during ENSO events. Increased precipitation over

California during the Northern Hemisphere winter and early

spring is expected during El Niño (e.g., Schonher and

Nicholson 1989; Jong et al. 2016), and La Niña is associated

with the opposite pattern and drier conditions across California

(e.g., L’Heureux et al. 2015; Deser et al. 2018). However,

seasonal forecasts are necessarily probabilistic because pre-

dictable signals explain a relatively small fraction of the ob-

served seasonal climate variability. Also, the small number of

strong El Niño events in the recent observational record is a

source of uncertainty in estimates of ENSO teleconnections.

To overcome this limitation of the historical record, Kumar

and Chen (2017) examined the relationship of California pre-

cipitation and ENSO in integrations of the NCEP Climate

Forecast System version 2 (CFSv2; Saha et al. 2014). While

CFSv2 does show a mean shift (signal) toward wetter condi-

tions over California during El Niño conditions, the variability

unexplained by ENSO (noise) is large enough that even during

strong El Niño events, drier-than-average conditions, as oc-

curred in 2015/16, are possible. The signal-to-noise ratio is in

fact less than one over all of California in the CFSv2 model

(Kumar and Chen 2017). Using a broader set of models and
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examining all winter seasons, correlations for predictions of

California precipitation with ENSO are typically on the order

of 0.3–0.5, or ;9%–25% of variability explained (Kumar and

Chen 2020).

While it is discouraging that even the most extreme El Niño
events offer limited predictability of California precipitation

on seasonal time scales, forecasts of subseasonal climate

anomalies may offer some hope. For instance, monthly fore-

casts made at the start of January and February in 2016 and

2017 were able to capture the correct sign of the observed

anomaly for much of the month (Wang et al. 2017). In those

monthly forecasts, a zonal wind index for offshore, upper-level

winds over the eastern North Pacific Ocean provided an ex-

planation for this skill in the sense that January and February

values of the wind index are well correlated to California

statewide precipitation, and the wind index can be skillfully

predicted. Compared to ENSO, the North Pacific jet stream

is a more proximate factor in the evolution of precipitation

over California. Previous research on atmospheric rivers has

also emphasized the importance of the jet stream in steering

moisture and storms toward California (Ralph et al. 2018; Fish

et al. 2019). However, a question that remains is what are the

relative contributions of tropical Pacific variability and the

more immediately located upper-level wind anomalies in

driving precipitation variability and forecast skill over California

on subseasonal and submonthly time scales.

Given the linkages between jet stream variability over the

North PacificOcean and leading tropical modes, such as ENSO

and theMadden–Julian oscillation (MJO), it can be a challenge

to untangle the drivers that result in skillful predictions of

California precipitation. For instance, monthly averages of the

zonal wind index are significantly correlated toENSO at a level

of 0.6 for winter months (Wang et al. 2017). Others have shown

that certain phases of the MJO can help to drive California

precipitation (Higgins et al. 2000; Jones 2000; Arcodia et al.

2020). Determining the sources of skill and predictability has

practical implications too. For instance, for the purpose of

model development and improvement, it is useful to know

whether improving the dynamics of the jet stream or reducing

errors in the representation and prediction of tropical modes

would be most likely to improve California precipitation pre-

dictions. Some have speculated that reducing tongue biases and

improving predictions of sea surface temperature (SST) in the

western equatorial Pacific may enhance precipitation predic-

tions (Dias andKiladis 2019; Bayr et al. 2019; Ferrett et al. 2020).

This study, inspired by Kumar and Chen (2017), examines

drivers of California precipitation predictability and skill in

hindcasts from the Subseasonal Experiment (SubX; Pegion

et al. 2019) suite of models. Using model data avoids some of

the sample size limitations of the historical record. Moreover,

the relatively low skill of the precipitation forecasts, especially

at longer leads, means that themodel precipitation is, to a large

extent, independent of observations. We address the following

questions: In the model, what is the relative sensitivity of

California precipitation anomalies to the wind index and

ENSO?What is the relationship between the zonal wind index

and California precipitation after removing the influence of

ENSO? Beyond ENSO, do anomalous patterns of tropical

Pacific SST and outgoing longwave radiation (OLR) relate

significantly to predicted California precipitation anomalies?

Do SubX models demonstrate skill in predicting California

precipitation, and what are some of the sources of skill or,

conversely, of forecast error?

The paper is organized as follows. Data and methods are

described in section 2. A preliminary analysis in section 3 is the

basis for restricting our attention to a single SubXmodel and to

statewide averages of California precipitation. Results are

presented in section 4 and discussed in section 5.

2. Data and methods

a. SubX forecasts

Forecast data from SubX (Pegion et al. 2019) are analyzed

in this study. This multimodel ensemble dataset contains

retrospective and real-time forecasts. The real-time fore-

casts provide guidance for operational Week 3–4 outlooks at

NOAA/CPC, which are issued weekly. Seven SubX models

with varying ensemble sizes, initialization schemes, and ocean

coupling make forecasts of 0000–0000 UTC daily averages.

Forecasts extend approximately one month from their start

date. A forecast out to 30 days is expressed as the 30-day ‘‘lead

time.’’ Retrospective forecast periods vary with model, as do

start times, start frequency, and forecast length. Most of the

model retrospective forecasts from SubX include the period

1999–2016, and all analysis here uses retrospective forecasts for

that period. Because California precipitation occurs primarily

during cool season months, and because of our interest in

ENSO, we further restrict our analysis to the boreal winter

months of November–March (NDJFM).

b. Observations

The Unified gridded precipitation dataset (Chen et al. 2008)

is commonly used at CPC for precipitation analysis and veri-

fication. However, the time resolution of the Unified data are

1200–1200 UTC daily averages, which is incompatible with the

0000–0000 UTC daily averages of the SubX reforecast data.

This incompatibility is a problem both in SubX forecasts of

daily averages and for longer forecast target windows (e.g.,

weekly averages) as well, since there are 12 h at both the be-

ginning and end of the forecast target window where SubX and

Unified data do not match. Therefore, we use observational-

based precipitation data from 3-hourly values of the North

American Regional reanalysis (NARR; Mesinger et al. 2006).

The correlation of statewide California averages of 1200–

1200 UTC daily averages of NARR with Unified data are

greater than 0.95. The Unified data tend to have slightly larger

amplitude than the NARR data for extreme precipitation

events (Becker et al. 2009), likely due to the Unified’s more

direct use of precipitation observations. We note that SubX

forecast skill is slightly lower when computed using the Unified

data (not shown).

The observed Niño-3.4 index is computed from anomalies of

daily OISST data (Reynolds et al. 2007) averaged over the

region of 58N–58S and 1708–1208W. The zonal wind index from

Wang et al. (2017) is the difference of daily 200-hPa zonal wind

anomalies from the NCEP–NCAR reanalysis data averaged
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over two boxes over the eastern North Pacific Ocean: 2208–
2408E, 278–408N minus 2108–2408E, 458–608N. Observations of

daily gridded SST anomalies in the tropical Pacific Ocean are

processed from OSTIA (Donlon et al. 2012), and daily gridded

OLRanomalies are computed from theHigh-Resolution Infrared

Radiation Sounder (HIRS; Lee et al. 2007). Observational and

model forecast climatologies are computed as the first three an-

nual harmonics of daily data and removed from the total fields to

form anomalies. Forecast climatologies are lead-time dependent,

which means that lead-dependent biases as well as the seasonal

cycle are removed from model forecasts.

c. Methods

We use linear correlation as a measure of association be-

tween two quantities, for instance, to measure the association

of ENSO or zonal wind with California precipitation. We use

partial correlation as a measure of association between two

quantities while accounting for (i.e., conditional on) a third

quantity. Specifically, the partial correlation between California

precipitation and the zonal wind index is computed by linearly

removing the Niño-3.4 index from the two time series and cor-

relating the residuals. Likewise, the partial correlation between

California precipitation and the Niño-3.4 index is computed by

linearly removing the zonal wind index from the two time series

and correlating the residuals.

3. Preliminary analysis

For the period 1999–2016, the observed correlations be-

tween monthly Niño-3.4 and monthly precipitation during

NDJFM over California are not statistically significant or

uniformly positive (Fig. 1), which differs from the correlations

that are seen in seasonal (3-month) averages over longer pe-

riods (Jong et al. 2016; Kumar and Chen 2020). On the other

hand, correlations between the monthly zonal wind index and

monthly precipitation span the entire state of California and

are statistically significant. Since the associations are fairly

uniform across California, we focus on the statewide precipi-

tation average in the analysis that follows.

The skill of predicting the statewide average of California

precipitation was computed for each SubX model’s reforecast

as a function of lead-time and forecast-target averaging

window (Figs. S1–S7 in the online supplemental material).

Differing start days of the retrospective forecasts and ensemble

sizes make a direct comparison of model skill impractical, and

that is not our goal here. Likewise, a calculation of the multi-

model ensemble mean skill as a function of lead time is im-

possible for the same reason—forecasts with the same lead and

target period are not available for models with disparate start

days. Some notable features of the skill across models include

that CCSM4 has lower skill at the shortest leads than the other

models, which is likely due to the fact that it does not have its

own atmospheric data assimilation system. NRL also has rel-

atively low skill in its short lead forecasts of 1-day averages,

which could be related to its initialization or ensemble strategy.

Apart from these differences, skill across models for the

statewide average of California precipitation is more similar

than different. Therefore, we show results from a single model,

the Flow-Following Icosahedral Model (FIM; Sun et al. 2018),

which is a coupled model that is among the more skillful in the

suite of SubX models. The Global Ensemble Forecast System

(GEFS version 11 in SubX; Zhu et al. 2018) ensemble mean is

slightly more skillful than FIM, but the larger GEFS ensemble

(11members versus 4 in FIM) can explain this difference. Since

GEFS and the FIM have the same start days (once a week on

Wednesdays), their skill comparison is more straightforward.

The skill of a randomly selected 4-member GEFS ensemble

mean is statistically indistinguishable from that of the FIM

ensemble mean in predicting California-wide precipitation and

zonal winds according to a sign test (Fig. S8). Another reason

for focusing on FIM is that it is a coupled model, and GEFS is

not (Zhu et al. 2018). A coupled model can potentially repre-

sent the relation of California precipitation with dynamically

evolving SST and OLR anomalies.

4. Results

a. Skill

The skill of FIM in predicting NDJFM California precipi-

tation anomalies depends on both the forecast lead time and on

the length of the forecast averaging window (Fig. 2a). On the

FIG. 1. Monthly correlations between precipitation anomalies and (a) the Niño-3.4 index and (b) zonal wind index

during November–March over 1999–2016. The data are pooled, meaning that November–March are not averaged to-

gether and are retained as monthly averages. The stippling indicates significance at the 95% level using the Student’s t test.

OCTOBER 2021 L ’ HEUREUX ET AL . 1817

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:07 PM UTC



x axis, the forecast lead time describes the prediction forX days

into the future from the model’s starting condition. The color

shading in the legend indicates the length of the forecast av-

eraging window. For instance, a forecast of a 2-week average

with lead time of 8 days consists of the average of forecast days

8–21. Due to the inherent predictability limits of weather

forecasting, the skill of forecasting a 1-day average decays

steeply, dropping to a correlation of 0.5 around lead-day 8 and

to 0.2 by around a 2-week lead. At NOAA/CPC, subseasonal

forecasts are produced for Week 2 (forecast days 8–14) and for

week 3–4 (forecast days 15–28), and the FIM correlation for

these targets is 0.5 and 0.3, respectively, reflecting a sharp drop

in skill with lead times beyond day 7 that is not offset by longer

forecast-averaging windows. Taking 0.5 as a correlation

threshold for useful skill, useful skill is lost at roughly the same

lead regardless of forecast-averaging window, that is, at day 9

for the single-day average forecast, at day 10 for the 1-week

forecast average, and at day 7 for the 2-week average. While

the 3-week and monthly average forecast correlations (yellow

and green shaded lines in Fig. 2a) remain at or slightly in excess

of 0.5 correlations at short leads, this may well be primarily due

higher skill in the earlier part of the forecast-averaging win-

dow. Notably we do not see skill with the signature of ENSO,

that is, skill whose source is persistent and has increasing

influence as the averaging window broadens due to enhance-

ment of the predictable signal and reduction of unpredictable

noise. Nor do we see skill extending to leads when the MJO

forecasts have skill (Wang et al. 2014; Vitart 2014). On the

other hand, the skill that FIM demonstrates in predicting the

zonal wind index, has similar characteristics to its California

precipitation skill, albeit with slightly higher values (Fig. 2b).

FIM predicts daily averages of the zonal wind index with a

correlation exceeding 0.5 out to ;10 days and with a correla-

tion of 0.7 for the monthly average. Though not shown, all

SubX models demonstrate greater skill in predicting the zonal

wind than in predicting California precipitation.

b. Predictability

To directly investigate the question of what signals lead to

skillful precipitation forecasts, we take the view that predict-

ability is a prerequisite for skill and examine precipitation

predictability in the FIM. First, we consider potential pre-

dictability of precipitation, and ask to what extent the Niño-3.4
and wind indices in the model are sources of precipitation skill.

The term potential is used because simultaneous values are

used, similar to observational studies of potential predictability

(Hoerling and Kumar 2002; DelSole et al. 2013). Computing

the average precipitation anomaly in FIM ensemble members

FIG. 2. The correlation by forecast lead time (x axis) between observed and FIM ensemble

mean predictions of (a) California statewide average precipitation anomalies and (b) the en-

semble mean zonal wind index anomalies for monthly averages during November–March

1999–2016. The colors indicate different averaging windows ranging from daily to monthly. All

correlations are statistically significant at the 95% level using a Student’s t test, with the ex-

ception of correlations beyond 23 days lead for the 1-day average.
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as a function of Niño-3.4 and the wind index (Fig. 3a) shows

that average precipitation anomalies increase as the wind index

increases (a strong gradient changing from orange to green

shades in the vertical direction), regardless of the value of

Niño-3.4. On the other hand, there are no clear changes in

average precipitation anomalies as the Niño-3.4 index changes
(no clear gradients in the horizontal direction of Fig. 3a). In

fact, when the zonal wind index is near zero, California pre-

cipitation anomalies shift slightly from wetter conditions (light

green) during negative Niño-3.4 values to drier conditions

(light orange) for positive Niño-3.4 values. Overall, California

precipitation anomalies discernibly shift depending on the

value of the zonal wind index (Fig. 3b), but shift little for values

of the Niño-3.4 index (Fig. 3c), and this is true both for the

central tendency of the precipitation distribution and its per-

centiles. The only shift in the precipitation distribution with

changes in Niño-3.4 is for values around 1.58–28C.We conclude

that in FIM, ENSO is not a significant source of potential

predictability and that the wind index is.

These details may be a consequence of limited sampling

during the 1999–2016 hindcast period (note the gap in Niño-3.4
values between 28 and 2.58C in Figs. 3a,c), but it is clear that

wetter conditions occur during a positive Niño-3.4 index only

with the support of a stronger wind index (all of the green

values in Fig. 3a on the right side of the zero line are in the

upper quadrant, where the wind index is positive). Likewise,

dry conditions occur during a negative Niño-3.4 index only

with the support of a weaker wind index (nearly all of the or-

ange values in Fig. 3a on the left side of the zero line are located

in the lower quadrant, where the wind index is negative). The

strong dependence on zonal wind and lack of dependence on

ENSO is even more striking in daily FIM averages (Fig. S9).

Therefore, ENSO plays little role in subseasonal predictability

of California precipitation according to FIM, with the zonal

wind index playing a dominant role in predictability of daily to

monthly averages. Despite the correlation between the wind

index and Niño-3.4 in FIM being 0.54 (Fig. 3d), only the wind

index shows a strong correlation with California precipitation.

FIG. 3. (a) Two-dimensional density plot of statewide averaged California precipitation anomalies conditional on

the zonal wind index and the Niño-3.4 index. The mean and selected percentiles of the distribution of statewide

averaged California precipitation anomalies conditional on (b) the zonal wind index and (c) the Niño-3.4 index.

(d) A scatterplot of the zonal wind and Niño-3.4 indices. Lines in (b) and (c) show the 10th, 25th, 75th, and;90th

percentile of precipitation and the mean. The color bar inset in (a) shows the average California precipitation value

in mmday21. Data shows monthly averages from the 4 FIMmembers (1252 samples5 313 starts3 4 members) for

November–March during 1999–2016. Gaps are present where there are no samples.
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As in the observed data (correlation of 0.6 for the monthly

average; not shown), there is a clear relationship between the

model’s Niño-3.4 index and the zonal wind across various av-

eraging windows and lead times (Fig. 4). Unlike Fig. 2, which

correlates the observations with the prediction, Fig. 4 displays

the correlation between the predicted Niño-3.4 index and the

predicted zonal wind index. A forecast lead time of 10 indicates

the correlation between the two indices predicted 10 days into

the future. In the ensemble means, the correlation between the

model Niño-3.4 index and the zonal wind increases with lead

time and averaging window, which is consistent with the rela-

tive enhancement of the ENSO signal in the ensemble mean as

the synoptic-scale predictability related to the initial conditions

fades away. There are also significant correlations, from 0.4 to

0.7, between the model’s California precipitation and the

model’s zonal wind index for all averaging windows and lead

times, with little dependence on lead time (Fig. 5a). When the

model’s Niño-3.4 index is linearly removed from precipitation

and zonal wind, the partial correlations are not notably dif-

ferent (cf. Fig. 5a with Fig. 5c), indicating that the association

between precipitation and the zonal wind is not due to ENSO.

Interestingly, the correlations continue to increase with lead

time, which means the predictable signal for California pre-

cipitation must be provided by the zonal wind.

FIG. 4. Correlations by forecast lead time (x axis) between FIM ensemble mean predictions

of the zonal wind index and the FIM ensemble mean Niño-3.4 index. The colors indicate dif-

ferent averaging windows ranging from daily to monthly. November–March anomalies are

created from removing the lead-dependent climatology over 1999–2016. All correlations are

statistically significant at the 95% level using a Student’s t test.

FIG. 5. The correlation by forecast lead time (x axis) of FIM ensemble mean predictions of California precipitation with (a) the en-

semblemean wind index and (b) the ensemblemeanNiño-3.4 index. The correlation by forecast lead time (x axis) of FIM ensemblemean

predictions of California precipitation with (c) the ensemble mean wind index and the ensemble mean Niño-3.4 index removed and with

(d) the ensemble mean Niño-3.4 index and the ensemble mean wind index removed. November–March anomalies are created from

removing the lead-dependent climatology over 1999–2016. All correlations are statistically significant at the 95% level using a Student’s

t test, with few exceptions. In (b), correlations are only significant beyond the 16-day lead for the 1-day average and beyond the 7-day lead

for the 7-day average. In (d), the 1-day average is insignificant at 2–3-, 10–11-, and 22-day leads.
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Even though the wind–precipitation relation is not sensitive

to the presence of ENSO, is it possible that the zonal wind plays

some role in ENSO–precipitation linkages? Based on the

conditional distribution of precipitation with Niño-3.4
(Fig. 3c), the small positive correlations (less than 0.2) between

the Niño-3.4 index and California precipitation are to be ex-

pected (Fig. 5b). Again, there is a tendency for the correlations

to increase with lead time as the variability in the ensemble

mean related to initial conditions decreases, and Niño-3.4 ex-

plains more variance. However, with the removal of the zonal

wind, the ENSO–precipitation relation changes markedly

(Fig. 5d). The partial correlations are near zero or even slightly

negative (20.4 for some averages and lead times). Though El

Niño is weakly related to wetter conditions and La Niña is

associated with a drier state, the removal of the zonal wind

reverses these relationships. This behavior is consistent with

the previously noted behavior in which near-zero zonal index

values indicate an inversion in the relationship between

monthly average precipitation and ENSO (Fig. 3). This finding

is new, and we discuss some potential mechanisms for this

behavior in the discussion section.

An interpretation of the results presented in Figs. 4 and 5 is

that the ENSO–precipitation relationship is due to ENSO

influencing the zonal wind and the zonal wind in turn

influencing California precipitation. This two-step process

means that the connection from ENSO to precipitation is

relatively weak. However, the zonal wind varies for many

reasons independent of ENSO. When ENSO and the zonal

wind happen to be in alignment (Fig. 4), positive associa-

tions between ENSO and precipitation can exist (Fig. 5b).

However, the zonal wind appears to influence precipitation

independently of ENSO.

c. Forecast errors

Thus, the potential predictability analysis suggests that

forecast skill is strongly related to the zonal wind index and

negligibly related to Niño-3.4. If this is the case, errors in wind

index predictions should be strongly related to errors in pre-

cipitation predictions. Errors are computed by subtracting the

observed values from the ensemble mean forecast values.

Indeed, errors in California precipitation are significantly

correlated to errors in the zonal wind index in the FIM model

at all leads and for averaging windows (Fig. 6a). Conversely,

the correlation between errors in California precipitation

anomalies and the Niño-3.4 index is close to zero for all fore-

cast averaging window and lead times (Fig. 6b). Errors in the

FIG. 6. The correlation by forecast lead time (x axis) of the FIM ensemble mean prediction

error (forecasts minus observations) of the statewide average California precipitation anom-

alies with the error in (a) the zonal wind index and (b) the error in the Niño-3.4 index. The

colors indicate different averaging windows ranging from daily to monthly. Observations are

subtracted from the ensemble mean forecast to obtain the error. November–March anomalies

are created from removing the lead-dependent climatology over 1999–2016. In (a), correlations

are statistically significant at the 95% level using a Student’s t test, whereas in (b), none of the

correlations are significant.
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prediction of precipitation are associated with errors in the

zonal wind, not errors in the Niño-3.4 index.

d. Other tropical forcings

Though the Niño-3.4 SST index has significant relationships

with many other ENSO indices over the tropical Pacific Ocean

(Bamston et al. 1997), there may be other regions or variables

that are better related to California precipitation. For instance,

during the 2015/16 El Niño, some (Lee et al. 2018; Siler et al.

2017) argued that the unique pattern, or flavor, of the tropical

SST anomalies resulted in the abnormally dry conditions in

California. To examine the possibility that SST and OLR

anomalies across the tropical Pacific account for predictability

and error in California precipitation, we computed correlation

maps associated with the 32-day average in FIM. Within the

model, ensemble mean SST anomalies that are positively

correlated with ensemble mean California precipitation ap-

pear as an El Niño–like pattern, with maximum correlations on

the equator in the central and eastern Pacific Ocean (Fig. 7a).

The same is true for OLR, with an El Niño–like pattern of

negative correlations evident from the date line to the eastern

tropical Pacific Ocean (Fig. 7b). However, correlations are

very weak in both maps, with the maximum around 0.2–0.4,

with SST andOLR corresponding to a 4%–16%variance in the

predictions of monthly California precipitation. Correlations

between forecast errors (Figs. 7c,d) are even weaker, with in-

significant correlations (less than 0.2) across the tropical

Pacific. Thus, while very limited predictability may arise from

ENSO-like patterns in the tropical Pacific for monthly aver-

ages, it does not appear there are other tropical SST or OLR

regions that contribute systematically to predictions of

California precipitation. Likewise, SST and OLR correlations

with forecast errors do not expose patterns that account for

errors in California precipitation.

Precipitation skill could arise from shorter-time-scale vari-

ations, such as the MJO and other subseasonal processes,

However, lead–longitude plots of forecast skill and error be-

tween daily averaged California precipitation anomalies and

SST and OLR anomalies averaged between 58S–58N show

small correlations, at most around 0.2–0.3 between forecasts of

precipitation and SST/OLR (Fig. 8). As in Fig. 7, the correla-

tion patterns resemble ENSO, with a positive relationship with

SST and negative relationship with overlying OLR. Overall,

there is no strong evidence that differences between the ob-

servations and forecasts in SST or OLR patterns are correlated

to errors in precipitation. Furthermore, the patterns shown in

the forecast correlation plots are fairly stationary with lead

time, only showing slight fluctuations in strength. In particular,

there are no hints of eastward or westward propagation that

might suggest a lead–lag relationship with the MJO or other

subseasonal equatorial modes.

5. Discussion

Predictability and forecast errors in subseasonal California

precipitation are more directly related to the upper-level zonal

winds over the eastern North Pacific Ocean than to tropical

Pacific variability. In the FIM model, ENSO and the MJO do

not appear to contribute substantially to forecast skill or ac-

count for errors in the predictions. Instead, the analysis pre-

sented here, albeit focused on a single SubX model, strongly

indicates that accurately predicting the zonal winds near

FIG. 7. Correlation maps of FIM ensemble mean California statewide average precipitation anomalies with (a) ensemble mean sea

surface temperature anomalies and (b) ensemble mean outgoing longwave radiation anomalies across the tropical Pacific Ocean.

Correlation maps of California statewide average precipitation anomaly errors with (c) sea surface temperature anomaly errors and

(d) outgoing longwave radiation anomaly errors across the tropical Pacific Ocean. November–March anomalies are created from re-

moving the lead-dependent climatology over 1999–2016. Correlations are statistically significant for coefficients greater than 0.1 and less

than 20.1 at the 95% level using a Student’s t test.
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California is key to capturing California precipitation on daily

to monthly time scales. Most of our analysis has focused on

linear relations that are well described by correlation and

partial correlation coefficients. Therefore, there is the pos-

sibility that there are nonlinear relations that are not cap-

tured in such a linear framework. However, we do note that

our nonparametric analysis (binning in Fig. 3c) is not overly

supportive of a nonlinear relation between ENSO and

California precipitation. Also, we examined simultaneous

rather than lagged relationships between the ENSO state

and California precipitation primarily because the persis-

tence of ENSO exceeds 30 days. Future work might consider

lagged associations with less persistent, subseasonal modes

(Mundhenk et al. 2018).

Our findings are consistent with Wang et al. (2017) who

found that monthly average predictions from ECMWF and

CFSv2 were not significantly associated with tropical vari-

ability in forecasts associated with the 2015/16 El Niño or the

2016/17 La Niña. Also during these two events, Singh et al.

(2018) and Swenson et al. (2019) revealed that even seasonal

mean forecasts were sensitive to the details of the extra-

tropical, upper-level circulation anomalies over the North

Pacific Ocean and California. Thus, these seasonal anomalies

were consistent with noise and not forcing from tropical

FIG. 8. As in Fig. 7, but for time–longitude diagrams of 58S–58N averaged anomalies across the equatorial Pacific

Ocean of (left) sea surface temperature and (right) outgoing longwave radiation. The x axis indicates the longitude,

and the y axis denotes the forecast lead time by day. Data are based on daily (1-day) averages. Correlations are

statistically significant for coefficients greater than 0.1 and less than 20.1 at the 95% level using a Student’s t test.
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heating. Other papers that have examined subseasonal pre-

cipitation over California, such as the results from the S2S

models by Pan et al. (2019), obtain skill that is similar to those

shown in the FIM and other SubX models. Generally, there is

minimal evidence that daily-to-monthly tropical variations

play a large role inmodulating the predictability and prediction

skill of subseasonal precipitation over California.

Nonetheless, we have shown that predictions of California

precipitation can be skillful when time scales shorter than

seasonal averages are considered, which provides an option for

users who find the level of unpredictable noise intolerable in

seasonal forecasts. Diagrams like those in Fig. 2 and Figs. S1–

S7 can be used to select skill levels that may better match the

interests and confidence-level triggers for decisionmaking. For

example, looking at Fig. 2, someone may not feel comfortable

taking action when correlations are 0.3 (9% of the observation

variance are explained by the forecasts), but they may be able

to make a decision from correlation coefficients greater than

0.5 or greater (25% explained variability). For instance, if a

correlation of ;0.5 or greater is required, then a 32-day aver-

age forecast would meet these conditions and so would a 7-day

(1 week) averaging window for forecasts out to lead-8. In other

words, a Week 2 forecast (a forecast made today for the av-

erage of 8–14 days from now) would meet these criteria.

However, a Week 3–4 forecast (14-day average), which starts

at lead-15, would fall short and only offer a correlation of;0.3.

Without a longer reforecast dataset, we were unable to test

how skill may vary for other decades (e.g., Weisheimer

et al. 2020).

The analysis within this paper may also help inform deci-

sions related to model development. Because the FIM is a

coupled model, the lack of significant correlations in tropical

Pacific SST and OLR may suggest that coupled processes are

not essential to skillful subseasonal forecasts of California

precipitation. The relative unimportance of coupled processes

could also be why the GEFS, with its prescribed, uncoupled

SSTs appears to offer equivalent skill to the FIM in predictions

of California precipitation and zonal wind. Therefore, focusing

on the model’s representation of the jet stream and mid-to-

upper-level circulation over the North Pacific Ocean may

provide greater dividends in improving California precipita-

tion forecasts (e.g., Jung et al. 2010; Rodwell et al. 2018; Grams

et al. 2018; Chang et al. 2019; Sánchez et al. 2020, and

many more).

Our use of partial correlation to analyze the relations be-

tween California precipitation, Niño-3.4, and the zonal wind

index fits into the framework known as a causal network or

inference (Pearl 2009; Kretschmer et al. 2021). Here, the nodes

of the graphical model are ENSO, the zonal wind, and

California precipitation. Kretschmer et al. (2021) used these

three nodes as an example of a mediator type of causal struc-

ture. A simple linear regression with Niño-3.4 as a predictor

and California precipitation as the predictand indicates a

causal effect between the two (a positive, nonzero coefficient).

However, when their wind index (using storm track activity) is

added as an additional predictor, the Niño-3.4 index is given

zero weight. This implies if the wind index is known, knowing

the ENSO state provides no additional (in a linear sense)

information. Equivalently, thismeans that ENSO andCalifornian

precipitation are conditionally (on the wind index) independent.

Moreover, the stronger relation of California precipitation with

the wind index than with ENSO is consistent with wind index

variability being influenced by other factors in addition to ENSO.

We find that useful skill in California precipitation predic-

tions does not extend much beyond lead times of 7–10 days,

regardless of averaging window. This behavior is in contrast to

rainfall predictions in other regions, where there are strong

ENSO andMJO signals andwhere longer window averages are

more skillful than shorter window averages at long lead times

(Tippett et al. 2015; Vigaud et al. 2019).

Our finding of a negative statistical relation between ENSO

and California precipitation after accounting for zonal wind

variability is intriguing but, at present, we cannot not offer a

thorough physical explanation. Though not examined here,

others have demonstrated that a warmer ocean relative to the

land can result in drying over the land (e.g., Roxy et al. 2015).

Perhaps the land-sea thermal contrast, which during El Niño is

weaker due to above-average SSTs off coastal California, can

locally result in more offshore winds, increased subsidence,

and drying over land. Another possible physical mechanism is

that poleward transport of tropical moisture along integrated

water vapor bands depends on theENSOphase, being highest in

the neutral phase and lowest in the El Niño phase (Bao et al.

2006). Consistent with this is the reduction of Pacific tropical

moisture exports to the Northern Hemisphere during El Niño
years (Knippertz et al. 2013). We leave it to future investigation

to explore this new and unexpected result. More importantly, it

is clear that from the analysis so far that, in the FIM, the zonal

wind is key to predicting California subseasonal precipitation

variability and that this linkage does not depend on ENSO.

Moreover, in order to see a positive association between ENSO

and precipitation, albeit weak, the zonal wind must be involved.
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